Search results for " cytochrome"

showing 10 items of 39 documents

The late Pleistocene origin of the Italian and Maltese populations of Potamon fluviatile (Malacostraca: Decapoda): insights from an expanded sampling…

2017

Evidence available for most inland water and terrestrial organisms highlights the significant role played by southern Italy, Sicily and the Maltese islands as refuges during Pleistocene climatic fluctuations. However, to date, the hypothesis that these areas may have acted as Pleistocene refugia for the freshwater crab Potamon fluviatile has not been explicitly tested, and a recent origin of local P. fluviatile populations was proposed on the basis of a small set of analysed molecular data. We have thus expanded the currently available data set on the population genetic structure of P. fluviatile through dedicated samplings in Sicily (Italy, 18 specimens), the Maltese Islands (Malta, 15 spe…

0106 biological sciences0301 basic medicineEarly PleistocenePleistoceneFreshwater crabs -- Maltarefuge areaPopulationSettore BIO/05 - Zoologiarefuge areasFreshwater crabs -- Italy010603 evolutionary biology01 natural sciences03 medical and health sciencesCytochrome oxidase -- CongressesMalacostracalcsh:Zoologylcsh:QL1-991educationFreshwater crabrange expansioneducation.field_of_studyPotamon fluviatilegeography.geographical_feature_categorybiologyEcologybiology.organism_classificationMitochondrial DNAlanguage.human_languageMaltese030104 developmental biologyGeographyArchipelagolanguageCytochromesAnimal Science and ZoologymtDNA Cytochrome c oxidase subunit I (COI)Freshwater crabThe European Zoological Journal
researchProduct

Effect of gene-gene and gene-environment interactions associated with antituberculosis drug-induced hepatotoxicity.

2017

This study evaluated the association between environmental factors and genetic variations in enzymes that metabolize antituberculosis (anti-TB) drugs [arylamine N-acetyltransferase 2, cytochrome P450 2E1 (CYP2E1), glutathione S-transferase theta 1 (GSTT1), and glutathione S-transferase mu 1] with antituberculosis drug-induced hepatotoxicity (ATDH). We also investigated the potential gene-gene and gene-environment interactions as well as their association with ATDH development in a population of hospitalized TB patients from Buenos Aires.We investigated 364 TB patients who received anti-TB drugs. Physicians collected demographic and clinical data to identify environmental risk factors for AT…

0301 basic medicineAdultMalemedicine.medical_specialtyAntitubercular AgentsBiologyPharmacologyPolymorphism Single Nucleotide03 medical and health scienceschemistry.chemical_compoundYoung Adult0302 clinical medicineMolecular geneticsGenotypeGenetic variationGeneticsmedicineHumansGeneral Pharmacology Toxicology and PharmaceuticsAlleleMolecular BiologyGeneGenetics (clinical)chemistry.chemical_classificationEpistasis GeneticGlutathioneCYP2E1gene antitubercolosis drug drug cytochrome geneticsSettore BIO/18 - Genetica030104 developmental biologyEnzymechemistryLiver030220 oncology & carcinogenesisMolecular MedicineFemalePharmacogenetics and genomics
researchProduct

mRNA-binding protein tristetraprolin is essential for cardiac response to iron deficiency by regulating mitochondrial function

2018

Cells respond to iron deficiency by activating iron-regulatory proteins to increase cellular iron uptake and availability. However, it is not clear how cells adapt to conditions when cellular iron uptake does not fully match iron demand. Here, we show that the mRNA-binding protein tristetraprolin (TTP) is induced by iron deficiency and degrades mRNAs of mitochondrial Fe/S-cluster-containing proteins, specifically Ndufs1 in complex I and Uqcrfs1 in complex III, to match the decrease in Fe/S-cluster availability. In the absence of TTP, Uqcrfs1 levels are not decreased in iron deficiency, resulting in nonfunctional complex III, electron leakage, and oxidative damage. Mice with deletion of Ttp …

0301 basic medicineCardiac responseCardiac function curveIron-Sulfur ProteinsTristetraprolinMitochondria HeartCell Line03 medical and health sciencesElectron Transport Complex IIIMiceTristetraprolinmedicineAnimalschemistry.chemical_classificationMice KnockoutReactive oxygen speciesMultidisciplinaryNDUFS1MyocardiumNADH DehydrogenaseIron deficiencyIron Deficienciesmedicine.diseaseCell biology030104 developmental biologychemistryPNAS PlusCoenzyme Q – cytochrome c reductaseOxidation-ReductionFunction (biology)
researchProduct

Toxicity as prime selection criterion among SARS-active herbal medications

2021

We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in …

2019-20 coronavirus outbreakmedicine.medical_specialtyRelative toxicityCoronavirus disease 2019 (COVID-19)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)Pharmaceutical ScienceReviewSARS-CoV-2 severe acute respiratory syndrome coronavirus 203 medical and health sciencesCytochrome P450 Phytochemicals0302 clinical medicineSOD superoxide dismutaseDrug DiscoveryMedicineAnimalsHumansOral applicationIKK inhibitor of κB kinase030304 developmental biologyPharmacologyRational phytotherapy0303 health sciencesPublic healthCOVID-19 Coronavirus disease 2019JNK c-Jun N-terminale kinaseNO nitric oxidePlants MedicinalTraditional medicineToxicityACE2 angiotensin converting enzyme 2business.industrySARS-CoV-2Public healthCOVID-19Th2 T helper cells type 2NF-κB nuclear factor- κ B cellsComplementary and alternative medicine030220 oncology & carcinogenesisToxicityMolecular MedicineCYP cytochrome P450 monooxygenaseHIV-1 human immunodeficiency virus 1businessSelection criterionMAPK mitogen-activated protein kinaseDrugs Chinese HerbalPhytomedicine
researchProduct

Polyoxypregnanes as safe, potent, and specific ABCB1-inhibitory pro-drugs to overcome multidrug resistance in cancer chemotherapy in vitro and in vivo

2021

Multidrug resistance (MDR) mediated by ATP binding cassette subfamily B member 1 (ABCB1) is significantly hindering effective cancer chemotherapy. However, currently, no ABCB1-inhibitory drugs have been approved to treat MDR cancer clinically, mainly due to the inhibitor specificity, toxicity, and drug interactions. Here, we reported that three polyoxypregnanes (POPs) as the most abundant constituents of Marsdenia tenacissima (M. tenacissima) were novel ABCB1-modulatory pro-drugs, which underwent intestinal microbiota-mediated biotransformation in vivo to generate active metabolites. The metabolites at non-toxic concentrations restored chemosensitivity in ABCB1-overexpressing cancer cells v…

ABCC1 ATP binding cassette subfamily C member 1IC50 half maximal inhibitory concentrationMultidrug resistancePharmacologyNADPH reduced nicotinamide adenine dinucleotide phosphateF bioavailabilitychemistry.chemical_compoundPCR polymerase chain reaction0302 clinical medicineMDR multidrug resistanceECL electrochemiluminescencet1/2 elimination half-lifeLC–MS liquid chromatography coupled with mass spectrometryN.D. not detectedGeneral Pharmacology Toxicology and PharmaceuticsBBB blood–brain barriermedia_commonATF3 activating transcription factor 30303 health sciencesChemistryABC ATP-binding cassetteNMPA National Medical Products AdministrationPXR pregnane X receptorSDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresisHBSS Hankʹs balanced salt solutionABCB1Combination chemotherapyProdrugMarsdenia tenacissimaCmax peak concentrationPaclitaxelGAPDH glyceraldehyde-3-phosphate dehydrogenase030220 oncology & carcinogenesisBHI brain heart infusionOriginal ArticleAUC0–∞ area under plasma concentration vs. time curveMRT mean residence timeDrugmedia_common.quotation_subjectRM1-950Vd volume of distributionABCB1 ATP binding cassette subfamily B member 1UIC-2 mouse monoclonal ABCB1 antibodyABCG2 ATP binding cassette subfamily G member 2Combination chemotherapyCYP cytochrome P450 isozymePI propidium iodideTEER transepithelial electrical resistance03 medical and health sciencesPBS phosphate buffer salineFBS fetal bovine serumDox doxorubicinIn vivoPOP polyoxypregnanemedicine030304 developmental biologyEVOM epithelial tissue voltohmmeterTmax time for peak concentrationCancerLBE lowest binding energyPE phycoerythrinmedicine.diseaseMultiple drug resistancePolyoxypregnanePapp apparent permeabilityN.A. not applicableCancer cellH&E hematoxylin and eosinMDR1a multidrug resistance protein 1aTherapeutics. PharmacologyqPCR quantitative PCRM. tenacissima Marsdenia tenacissimaCL clearanceSD standard derivationActa Pharmaceutica Sinica B
researchProduct

Cytochrome P450 2E1 variable number tandem repeat polymorphisms and health risks: A genotype-phenotype study in cancers associated with drinking and/…

2012

Cytochrome P450 2E1 (CYP2E1) is one of the main enzymes involved in the oxidation of ethanol and in the transformation of a number of potentially dangerous compounds. It has various polymorphic sites, one of which is a variable number tandem repeat (VNTR) polymorphism previously described in the 5'-flanking region. The aim of this study was to investigate the genotype-phenotype association between CYP2E1 VNTR polymorphisms and risky health habits in healthy subjects and to analyze the associations between these polymorphisms with drinking- and/or smoking-related cancers. We analyzed 166 healthy subjects by genotyping for the CYP2E1 VNTR polymorphism associated with drinking and/or smoking h…

AdultMaleCancer Researchmedicine.medical_specialtyCarcinoma HepatocellularAlcohol Drinkinghuman genetic variability genetic factors cytochrome P450 2E1 variable number tandem repeat polymorphisms predis-posing alleles health risks drinking- and/or smoking-related cancer.Minisatellite RepeatsBiologyBiochemistryGastroenterologyRestriction fragmentYoung AdultRisk-TakingRisk FactorsInternal medicineGenotypeOdds RatioGeneticsmedicineHumansGenetic Predisposition to DiseaseMolecular BiologyGenotypingGenetic Association StudiesGeneticsPolymorphism GeneticLiver NeoplasmsSmokingCytochrome P-450 CYP2E1Odds ratiomedicine.diseaseConfidence intervalPancreatic NeoplasmsVariable number tandem repeatSettore BIO/18 - GeneticaOncologyCase-Control StudiesHepatocellular carcinomabiology.proteinMolecular MedicineAdenocarcinomaFemalePolymorphism Restriction Fragment Length
researchProduct

Tor-Sch9 deficiency activates catabolism of the ketone body-like acetic acid to promote trehalose accumulation and longevity

2014

In mammals, extended periods of fasting leads to the accumulation of blood ketone bodies including acetoacetate. Here we show that similar to the conversion of leucine to acetoacetate in fasting mammals, starvation conditions induced ketone body-like acetic acid generation from leucine in S. cerevisiae. Whereas wild-type and ras2Δ cells accumulated acetic acid, long-lived tor1Δ and sch9Δ mutants rapidly depleted it through a mitochondrial acetate CoA transferase-dependent mechanism, which was essential for lifespan extension. The sch9Δ-dependent utilization of acetic acid also required coenzyme Q biosynthetic genes and promoted the accumulation of intracellular trehalose. These results indi…

AgingSaccharomyces cerevisiae ProteinsKetoneLongevitySaccharomyces cerevisiaeSaccharomyces cerevisiaePhosphatidylinositol 3-Kinaseschemistry.chemical_compoundAcetic acidSettore BIO/13 - Biologia ApplicataHumans2. Zero hungerchemistry.chemical_classificationbiologyCatabolismaging yeast nutrition acetic acid nutrientsTrehaloseOriginal ArticlesCell Biologybiology.organism_classificationchronological lifespanTrehaloseacetic acidSch9chemistryBiochemistryCoenzyme Q – cytochrome c reductaseKetone bodiesleucineLeucineProtein KinasesAging Cell
researchProduct

Regulation of the effects of CYP2E1-induced oxidative stress by JNK signaling

2014

The generation of excessive amounts of reactive oxygen species (ROS) leads to cellular oxidative stress that underlies a variety of forms of hepatocyte injury and death including that from alcohol. Although ROS can induce cell damage through direct effects on cellular macromolecules, the injurious effects of ROS are mediated largely through changes in signal transduction pathways such as the mitogen-activated protein kinase c-Jun N-terminal kinase (JNK). In response to alcohol, hepatocytes have increased levels of the enzyme cytochrome P450 2E1 (CYP2E1) which generates an oxidant stress that promotes the development of alcoholic steatosis and liver injury. These effects are mediated in larg…

Alcoholic liver diseaseClinical BiochemistryReview ArticleMitogen-activated protein kinase kinasemedicine.disease_causeBiochemistryCytochrome P450 2E10302 clinical medicineMolecular Targeted TherapyMitogen-activated protein kinaseslcsh:QH301-705.5c-Jun N-terminal kinasechemistry.chemical_classificationTNF tumor necrosis factorlcsh:R5-9200303 health sciencesCell DeathCYP2E1 cytochrome P450 2E1Cytochrome P-450 CYP2E13. Good healthCell biologyPKD protein kinase DLiverJNK c-Jun N-terminal kinaseSab SH3 homology associated BTK binding protein030211 gastroenterology & hepatologySignal transductionlcsh:Medicine (General)MAP Kinase Signaling SystemAPAP acetaminophenMKK MAPK kinaseBiology03 medical and health sciencesROS reactive oxygen speciesPKC protein kinase CmedicineAnimalsHumansMAPKKK MAPK kinase kinaseProtein kinase ACell damage030304 developmental biologyReactive oxygen speciesMAP kinase kinase kinaseOrganic ChemistryJNK Mitogen-Activated Protein KinasesAlcoholic liver diseasemedicine.diseaseERK1/2 extracellular signal-regulated kinase 1/2Fatty Liverlcsh:Biology (General)chemistryOxidative stressNAFLD nonalcoholic fatty liver diseaseReactive Oxygen SpeciesMAPK mitogen-activated protein kinaseOxidative stressRedox Biology
researchProduct

Bax-derived membrane-active peptides act as potent and direct inducers of apoptosis in cancer cells.

2011

SUMMARYAlthough many cancer cells are primed for apoptosis, they usually develop resistance to cell death at multiple levels. Permeabilization of the outer mitochondrial membrane, which is mediated by proapoptotic Bcl-2 family members like Bax, is considered as a point-of-no-return for initiating apoptotic cell death. This crucial role has placed Bcl-2 family proteins as recurrent targets for anticancer drug development. Here, we propose and demonstrate a new concept based on using minimal active version of Bax to induce cell death independently of endogenous Bcl-2 proteins. We show that membrane-active segments of Bax can directly induce the release of mitochondria-residing apoptogenic fac…

ApoptosisMitochondrionMiceMESH: Protein Structure Tertiary0302 clinical medicineNeoplasmsgeneticsMESH: AnimalsMESH: Neoplasmsbcl-2-Associated X Protein0303 health sciencesbiologyMESH: PeptidesCytochrome capoptosisCytochromes cMESH: Cytochromes cproapoptotic BaxCell biologyMitochondriadrug therapymitochondria030220 oncology & carcinogenesisBacterial outer membraneProgrammed cell deathMESH: Cell Line TumorMESH: MitochondriaAntineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancerpore-forming peptideschemistryArticle03 medical and health sciencesBcl-2-associated X proteinBcl-2 familyCell Line TumorAnimalsHumansMESH: bcl-2-Associated X ProteinMESH: Mice030304 developmental biologyMESH: HumansMESH: ApoptosisBcl-2 familyCell BiologyProtein Structure Tertiaryanticancer agentantivascular therapyApoptosisdrug effectsCancer cellbiology.proteinMESH: Antineoplastic AgentspharmacologyphysiopathologyPeptidesmetabolism
researchProduct

Proton coupled electron transfer of ubiquinone Q2 incorporated in a self-assembled monolayer.

2011

We present a complete study of the reduction of ubiquinone Q(2) (UQ(2)) in simpler aqueous medium, over a pH range of 2.5 to 12.5. The short isoprenic chain ubiquinones (UQ(2)) were incorporated in a self-assembled monolayer. Under these conditions, the global 2e(-) electrochemical reaction can be described on the basis of a nine-member square scheme. The thermodynamic constants of the system were determined. The global 2e(-) process is controlled by the uptake of the second electron. The elementary electrochemical rate constants obtained by fitting of the experimental rate constant were k(s4) = 1.5 s(-1) for QH˙(+)(2)↔ QH(2), k(s5) = 1.5 s(-1) for QH˙↔ QH(-) and k(s6) = 1 s(-1) for Q˙(-)↔ …

Aqueous mediumChemistrySurface PropertiesUbiquinoneAnalytical chemistryGeneral Physics and AstronomyWaterSelf-assembled monolayerElectronHydrogen-Ion ConcentrationElectrochemistryElectron TransportReaction rate constantCoenzyme Q – cytochrome c reductaseMonolayerElectrochemistryThermodynamicsGoldPhysical and Theoretical ChemistryProton-coupled electron transferProtonsOxidation-ReductionPhysical chemistry chemical physics : PCCP
researchProduct